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Abstract. We use the recent estimates of NNLO splitting functions, made by van Neerven and Vogt, to
perform exploratory fits to deep inelastic and related hard scattering data. We investigate the hierarchy of
parton distributions obtained at LO, NLO and NNLO, and, more important, the stability of the resulting
predictions for physical observables. We use the longitudinal structure function FL and the cross sections
σW , σZ for W and Z hadroproduction as examples. For FL we find relatively poor convergence, with
increasing order, at small x; whereas σW,Z are much more reliably predicted.

1 Introduction

With the increased precision of deep inelastic scattering
data [1], and the need for accurate predictions at the Teva-
tron and the LHC, it is clearly essential to extend global
parton analyses to next-to-next-leading-order (NNLO) in
αS . Although the relevant deep inelastic coefficient func-
tions have been known for some time [2], there is only par-
tial information on the corresponding splitting functions.
The N = 2, 4, 6, 8 (and 10 for non-singlet) moments have
been calculated [3], which effectively provide information
on the high x behaviour of the splitting functions. Also
known is the most singular log 1/x behaviour at small x,
both for the singlet [4], and the phenomenologically less
important nonsinglet [5] splitting functions, and the lead-
ing nf contributions [6] of the nonsinglet splitting func-
tions, and of the CA dependent part of Pgg [7]. Recently
van Neerven and Vogt [8] have constructed compact an-
alytic expressions for the splitting functions which repre-
sent the fastest and the slowest evolution that is consistent
with the above information. We believe that these two ex-
treme behaviours are indeed realistic. Although there are
indications that the true behaviour of the splitting func-
tions is likely to be slightly nearer to that corresponding to
the slow evolution possibility1, for simplicity we shall use
the average of the two extremes for our ‘central’ NNLO
analysis.

It is important to stress an important difference be-
tween our analysis and the procedure used by van Neerven
and Vogt [8]. The latter authors start from a fixed set of
partons and a fixed scale (∼ 30 GeV2 i.e αS = 0.2) and
present the differences between LO, NLO and NNLO evo-

1 A view confirmed by private communication with A. Vogt

lution. Here we compare the partons, and the consequent
predictions for physical observables, obtained by perform-
ing global analyses at LO, NLO and NNLO. Both works
present NNLO results obtained using the extreme esti-
mates of the O(α3

S) splitting functions.
In Sect. 2 we discuss the changes to the global anal-

ysis that are necessary in going from a NLO to NNLO
formulation. Then, in Sect. 3, we present seven new fits
to the deep inelastic and related data; that is LO, NLO
and five NNLO analyses. To gain insight into the impact
of the NNLO contributions, we discuss essential features
of the fits in terms of the behaviour of the splitting (and
coefficient) functions. In Sect. 4 we compare the partons
obtained in the LO, NLO and NNLO analyses, paying
particular attention to the gluon distribution in the small
x region. The parton distributions are scheme dependent
and are not themselves observable. The comparison of LO,
NLO and NNLO predictions for physical observables is
much more meaningful. In Sect. 5 we study the predic-
tions for the longitudinal structure function, FL. This is a
particularly relevant observable as it directly reflects the
behaviour of the gluon distribution at small x, and hence
most directly probes the stability, or convergence, of par-
ton analyses as we go from the LO, to the NLO, and then
to the NNLO framework. In Sect. 6 we compare the LO,
NLO, NNLO predictions for the cross sections of W and
Z boson production at the Tevatron pp̄ collider and at the
LHC. These observables mainly depend on the quark dis-
tributions in the region Q2 ∼ 104 GeV2, and x ∼ 0.05 and
0.006 respectively. The stability of the predictions offers
the possibility of using the W and Z events as a luminos-
ity monitor of the collider. Finally in Sect. 7 we give our
conclusions.
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2 Global analyses at NNLO

The procedure is based on the NLO analyses described
in [9,10]. However at NNLO it is important to allow the
gluon distribution to become negative in the low x, low
Q2 domain. We therefore adopt the parameterization

xg(x,Q2
0) = Ag x

−λg (1 − x)ηg (1 + εg
√
x+ γgx)

−A′
g x

−λ′
g (1 − x)η′

g (1)

at the starting scale Q2 = Q2
0 = 1 GeV2 of the evolution.

The parameter η′g turns out to be large in the additional
negative term and so this contribution is only important
at small x.

It is necessary to implement other extensions of the
formalism when going to NNLO. First, we use the three-
loop expression for αS , in the MS scheme. Second, we
require more detailed matching conditions when evolving
through the heavy flavour thresholds. The NNLO treat-
ment of heavy flavours is discussed in the Appendix.

Our main interest is in the quality of the fit to deep
inelastic data at small x. At high x we have a slight in-
consistency in our NNLO analyses in that we use NLO
expressions to fit to Drell-Yan, jet production and W±
boson rapidity asymmetry. The NNLO corrections to all
these quantities have not yet been calculated. However
note that the physical observables that we study (namely
FL and σW,Z) sample low x partons, which are determined
mainly by deep inelastic data for which the NNLO formal-
ism is consistent.

3 The new global fits

We perform LO, NLO and NNLO global fits to the set of
deep inelastic and related data that was used in [9,10], ex-
cept that now we use the jet ET distribution measured at
the Tevatron to pin down the gluon distribution at large x,
instead of prompt photon hadroproduction. The QCD de-
scription of the latter process has outstanding theoretical
problems [11]. A second change is that we include all the
available preliminary HERA data [1], which have higher
precision than hitherto.

The consequence of replacing prompt photon data by
the jet data is that the NLO fit is now similar to that
achieved by the previous MRST(g ↑) set of partons [9,
10]. A satisfactory description of the Tevatron jet data is
obtained, including particularly the normalization.

Five NNLO fits were performed. The ‘central’ fit and
the four extremes (AqAg, AqBg, BqAg, BqBg), where
Ai(Bi) corresponds to the slow (fast) evolution of parton
i = q, g. It turns out that the NNLO fits with slow and
fast gluon evolution are very similar, and so it is sufficient
to present results for just two of the extreme choices of
the splitting functions, namely

A ≡ AqAg (slow evolution),
B ≡ BqBg (fast evolution). (2)

In Figs. 1 and 2 we show the LO, NLO and NNLO
descriptions of the F2 data [12] in a few representative x
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Fig. 1. The description of data [12] for the F2 structure func-
tion at a few representative x values obtained in the LO, NLO
and NNLO global parton analyses

bins. We display only the ‘central’ NNLO fit. However the
quality of all the NNLO fits is similar. It is encouraging to
note that, as we proceed from the LO → NLO → NNLO
analysis, there is sequential improvement in the overall
quality of the description of the data. In particular, in
going from the NLO → NNLO fit, there is an improvement
in the simultaneous description of the NMC and HERA
F2 data. Indeed the quality of the NNLO fit is improved
for almost all subsets of the data.

From Figs. 1 and 2 we can see that at NNLO the scal-
ing violations increase both at small x and at large x. At
small x this is due mainly to the NNLO contribution to
Pqg, whereas at large x the NNLO term in the coefficient
function plays the dominant role. The relevant x→ 0 be-
haviour of the splitting functions are2

Pqg(x) = 2nf
αS

2π
1
3

(
1 +

5
3
ᾱS

x
+

14
9
ᾱ2

S ln(1/x)
x

+ · · ·
)
(3)

Pgg(x) =
ᾱS

x

[
1 − 61nf

36
ᾱS

x
−

(
395
104

− 1
2
ζ(3) − 11π2

72

2 For the LO splitting function P
(0)
qg (x) we use the coefficient

of the moment space expression in the limit N → 0 rather than
the real limit as x → 0
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parton analyses

+nf

(
295
2808

− π2

972

))
ᾱ2

S ln(1/x)
x

]
, (4)

where ᾱS = (3/π)αS , and the x → 1 behaviour of the
quark contribution to the F2 coefficient function is

C2,q(x) = δ(1 − x) + αS

4π
CF

(
4 ln(1 − x) − 3

1 − x
)

+

+
(αS

4π

)2
[
8C2

F

(
ln3(1 − x)
1 − x

)
+

(5)

+
(

−22
3
CACF +

4
3
CFnf − 18C2

F

) (
ln2(1 − x)
1 − x

)
+

]
.

As well as the improvement in the quality of the fit,
we can investigate the importance of the increased scaling
violations by looking at the higher-twist component of F2
extracted using a phenomenological analysis in which a
term (D(x)/Q2)F2(x,Q2) is included in the fit, as in [13].
The values of the higher-twist coefficient D(x) can be seen
in Table 1. At very high x a large positive higher-twist con-
tribution is clearly needed. This decreases slightly as we
move from LO to NLO to NNLO, but there is no indica-
tion that its presence will be eliminated by even higher

Table 1. Values of the higher-twist coefficient D(x) extracted
from the LO, NLO and NNLO fits

x LO NLO NNLO

0 – 0.0005 −0.4754 0.0116 −0.0061
0.0005 – 0.005 −0.2512 −0.0475 0.0437
0.005 – 0.01 −0.2481 −0.1376 −0.0048
0.01 – 0.06 −0.2306 −0.1271 −0.0359
0.06 – 0.1 −0.1373 −0.0321 0.0167
0.1 – 0.2 −0.1263 −0.0361 0.0075
0.2 – 0.3 −0.1210 −0.0893 −0.0201
0.3 – 0.4 −0.0909 −0.1710 −0.1170
0.4 – 0.5 0.1788 −0.0804 −0.0782
0.5 – 0.6 0.8329 0.3056 0.1936
0.6 – 0.7 2.544 1.621 1.263
0.7 – 0.8 6.914 5.468 4.557
0.8 – 0.9 19.92 18.03 15.38

orders. We note that the conclusion that NNLO contribu-
tions largely remove the need for higher twist at high x in
previous NNLO analyses [14] has been based on analysis
of CCFR data only, which exists at far higherW 2 than the
SLAC data included in our higher-twist fit, though it has
also been suggested that when NNLO coefficient functions
are used the higher twist may be almost entirely due to
target mass effects [15]. At x = 0.4 → 0.5 the higher-twist
contribution changes sign, becoming generally negative.
At LO its magnitude is then quite large, demonstrating
that the evolution is too slow at low Q2, both for NMC
and HERA data, as is obvious from Fig. 1. The magnitude
of the higher-twist contribution for x < 0.3 decreases sig-
nificantly going to NLO, and decreases again, to very small
values, at NNLO. Indeed, the sign of the small-x higher-
twist contributions at NNLO is not even well-determined,
with many x-bins preferring a slightly positive value. The
implication seems to be that higher-twist contributions at
small x are small, and their apparent size is decreased by
the inclusion of more perturbative corrections.

For each fit – LO, NLO, NNLO – we use the one-,
two-, three-loop expression for the β function, e.g. in the
NNLO fits the connection between αS and ΛMS involves
β2 evaluated in the MS scheme. For completeness we show
in Table 2 the values of the QCD coupling, together with
ΛQCD, found in the different global fits. For the NNLO
fits the value of ΛQCD is kept the same for the extremes
as for the central fit, but would change by only a tiny
amount if left free. In the fits where a higher-twist com-
ponent is allowed, at each order the extracted value of
ΛQCD increases, reflecting the effect of the increased scal-
ing violation by the new data at low Q2 included in these
fits. This increase in ΛQCD is only 10 − 15% (decreasing
with increasing order), leading to a corresponding increase
in αS(M2

Z) of 0.002 − 0.003.

4 Implications for parton distributions

In Fig. 3 we compare the parton distributions found in
the NNLO fit to those in the NLO analysis. We plot the
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Fig. 3. A comparison of partons obtained in the ‘central’
NNLO analysis with those obtained in the NLO fit, first at
Q2 = 10 GeV2 and then at Q2 = 104 GeV2. We show the
NNLO/NLO ratios for the gluon and the up and down quark
distributions

Table 2. The QCD coupling and Λ parameter

αS(M2
Z) Λ

(nf =4)

LO or MS
(GeV)

LO 0.1253 0.174
NLO 0.1175 0.300
(NNLO)central 0.1161 0.242
(NNLO)A 0.1161 0.242
(NNLO)B 0.1161 0.242

NNLO/NLO ratios for the gluon, and the up and down
quark distributions, at two values of Q2.

As we go from the NLO to the NNLO analysis, sev-
eral changes in the distributions are worth noting. First,
the decrease of the quark distribution at high x and the
slight increase at low x reflect the behaviour of the coef-
ficient functions C2,q and C2,g respectively. Second, recall
that in the NLO analysis the input gluon distribution de-
creased at small x. At NNLO we see the gluon decreases
even more. This decrease at low x occurs because of the
increase of Pqg, see (3). The consequent rise at x ∼ 0.1 is
to ensure that the momentum sum rule is satisfied. The
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Fig. 4. The evolution of the gluon obtained in the LO, NLO
and NNLO global analyses. The gluons obtained using the ex-
treme forms, A and B, of the NNLO splitting functions are
shown (dot-dashed curves), together with that from the aver-
age (continuous curves)

gluon distribution drives the evolution at small x. As we
evolve to higher Q2, the effect of the NNLO term in the
splitting function decreases, and a smaller gluon leads to
slower evolution than in the NLO analysis. Hence, for ex-
ample, by Q2 ∼ 104 GeV and x ∼ 10−4, all NNLO partons
are about 10–15% smaller than those at NLO.

Since the biggest NNLO effect is in the small x be-
haviour of the gluon, we study this distribution in more
detail. Figure 4 shows the gluon obtained in the LO, NLO
and NNLO global fits at various values of Q2. A clear LO
→ NLO → NNLO hierarchy3 of the small x behaviour of
the gluon is evident, which reflects the direct link with the
HERA deep inelastic data via Pqg of (3). Note also that
the evolution of the NNLO gluon is made even slower be-
cause of the (small) negative NNLO contribution in Pgg,
see (4).

The ‘starting’ parametric forms of the gluon found in
the LO, NLO and NNLO global analyses are

xg(x,Q2
0)

3 The wobble seen in the LO gluon at x ∼ 0.1 for
Q2 <∼ 20 GeV2 is a consequence of momentum conservation
and a much too large a gluon at small x
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=




31.2x0.390(1 − x)6.18 (1 − 5.23
√
x+ 7.33x) (LO)

51.8x0.535(1 − x)6.55 (1 − 3.92
√
x+ 4.68x)

−1.67x−0.032(1 − x)8.21 (NLO)

14.4x0.397(1 − x)5.56 (1 − 3.22
√
x+ 4.36x)

−0.705x−0.151(1 − x)8.69. (NNLO)

(6)

The ‘extreme’ curves A and B, plotted in Fig. 4, demon-
strate that the greatest uncertainty, coming from the lack
of complete knowledge of the NNLO splitting functions, is
in the small x behaviour of the gluon. Nevertheless even
allowing for the ‘extreme’ spread in the NNLO fits we see
that the hierarchy in the small x behaviour of the gluon
persists.

Figure 4 also shows that the gluon obtained from the
NNLO analysis becomes negative at small x and small
Q2, as anticipated in (1). However the gluon distribu-
tion itself is not a physically observable quantity. It is
scheme dependent. For example, Fig. 4 shows the gluons
obtained from analyses at different orders in the MS fac-
torization scheme. If on the other hand we were to adopt
the DIS scheme, then we find that the NNLO gluon is only
marginally negative at low x at Q2 = 2 GeV2. In order
to investigate the true implications of the convergence of
the perturbative series we must examine the predictions
for physically observable quantities. The behaviour of the
longitudinal structure function, FL, is particularly appro-
priate as it is sensitive to the small x behaviour of the
gluon. The production cross sections of W and Z bosons
at the hadron colliders are representative of other relevant
observables. We therefore study the predictions for these
quantities below.

5 Predictions for FL

The LO contribution to FL is O(αS), and so a consistent
(factorization scheme independent) NNLO prediction of
FL requires the O(α3

S) coefficient functions. These are not
known at present, but we do know much of the same in-
formation as for the O(α3

S) splitting functions, that is the
N = 2, 4, 6, 8 moments and the x → 0 behaviour. Hence
we estimate the coefficient functions in the same spirit as
used by van Neerven and Vogt for the O(α3

S) splitting
functions. The ‘central’ estimates for the NNLO contribu-
tions to CL are (where the common factor of (αS/(4π))3
is taken out)

C
(3)
L,g(x)

=

[
nf

(
381

ln(1/x)
x

− 1200
x

+ 1095 ln2(1/x)

−5960 + 21512x2 + 1928 ln(1 − x)
)
+n2

f

(
20
x

+148.8 ln2(1/x) − 5 − 741x2 − 147 ln(1 − x)
)]

(7)

C
(3)
L,NS(x)

=

[(
−323 ln2(1/x) − 3916 − 47526x2

−21954 ln(1 − x)
)
+ nf

(
−89 ln2(1/x) + 863 + 2796x2

+2038 ln(1 − x)
)
+ n2

f

(
15 ln2(1/x)

−54.3 + 72.4x2 − 23 ln(1 − x)
)]

(8)

C
(3)
L,PS(x)

=

[
nf

(
169 ln(1/x)

x
− 700
x

+ 186 ln2(1/x) + 578x2

+42.6 ln(1 − x) + 316
)
+ n2

f

(
10
x

+ 61 ln2(1/x)

−25 + 42.7x2 + 7.2 ln(1 − x)
)]

(9)

where NS and PS refer to quark non-singlet and pure-
singlet respectively. In fact the n2

f dependent part of the
non-singlet coefficient function is in principle known ex-
actly from the calculations in [16], but are small and well
modelled by our simple analytic expression.

The behaviour of the FL gluon coefficient function is
shown in Fig. 5. The two dominant features are (i) a size-
able contribution just below x = 1, and (ii) a large growth
with decreasing x arising from the most singular terms
found in [4]. In fact at small x we have4

CL,g(x) 	 αS

2π
nf

2
3

[
1 − 1

3
ᾱS

x

+
(
43
9

− ζ(2)
)
ᾱ2

S ln(1/x)
x

]
(10)

and the same expression, modulo the colour factor CF /CA

= 4/9, for CL,PS (except at leading order).
The non-singlet coefficient functions beyond LO are

very strongly peaked as x → 1. At NLO the coefficient
function [17] (with (αS/(4π))2 factored out) in this limit
behaves like

C
(2)
L,NS(x)

	 4CF

[
2CF ln2(1 − x) + (9 − 8ζ(2))CF ln(1 − x)

+
(
4(ζ(2) − 1)CA − (

11 − 2
3
nf

))
ln(1 − x)

]
, (11)

and there is an enhancement compared to the LO result,
(αS/(4π))4CFx, due to the ln(1−x) terms. The machinery
for computing the dominant ln(1−x) terms for CL,NS for

4 As for Pqg, at leading order we present the coefficient of
the moment space coefficient function as N → 0
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of the two extreme behaviours is shown

all orders in αS has recently been devised [18], and in prin-
ciple we could use this to evaluate the parts ∝ lnm(1−x) at
O(α3

S) for m = 2, 3, 4. However, the resulting expressions
are very far from compact and at this order we simply
choose to use the the information on the moments which
is available to give us a good estimate of the coefficient
function at high x. This confirms that again the coeffi-
cient function is very peaked for x → 1 – its size largely
compensating for the extra power of αS/(4π). A more so-
phisticated parameterization than that used in (9) should
really include higher powers in ln(1 − x), but since the
expression matches a range of moments very well it will
give an accurate representation of the coefficient function
convoluted with the smooth parton density.

The predictions for FL obtained from the parton distri-
butions of the different global fits are shown in Fig. 6. The
progressive increase at high x is attributable to the large
NS coefficient functions for x→ 1. At small x the LO and
NLO5 predictions mirror the gluon distribution (sampled
in the region of 2x due to the convolution). The NNLO
prediction of FL also mirrors the shape of the gluon at
low Q2 and moderate x, turning over at x ∼ 0.05. Then,
at even smaller x, the very large O(α3

S) contribution of
CL,g takes over, which after convolution with the gluon,

5 Note the very small coefficient of α2
S/x in CL,g of (10)

0

0.1

0.2

0.3

0.4

0.5

10
-5

10
-4

10
-3

10
-2

10
-1

1

F L
(x

,Q
2 )

Q2=2 GeV2

NNLO (average)
NNLO (extremes)
NLO
LO

0

0.1

0.2

0.3

0.4

0.5

10
-5

10
-4

10
-3

10
-2

10
-1

1

Q2=5 GeV2

0

0.1

0.2

0.3

0.4

0.5

10
-5

10
-4

10
-3

10
-2

10
-1

1x

F L
(x

,Q
2 )

Q2=20 GeV2

0

0.1

0.2

0.3

0.4

0.5

10
-5

10
-4

10
-3

10
-2

10
-1

1x

Q2=100 GeV2

Fig. 6. The predictions for the longitudinal structure function
FL obtained from the LO, NLO and NNLO sets of partons. The
NNLO extremes (using parton uncertainty alone) are plotted
only for Q2 = 2 GeV2

prevents FL becoming negative and, in fact, results in a
steep rise with decreasing x. As we evolve up in Q2 the ef-
fect of the O(α3

S) term in CL,g diminishes and eventually
the NNLO prediction for FL mirrors the shape and size
of the gluon via the O(αS) term in CL,g. Hence there is a
transition at Q2 ∼ 5 GeV2 where the NLO overtakes the
NNLO prediction6 of FL. At the lowest values of Q2 the
NNLO prediction of FL should be regarded with caution.
If we go below Q2 = 2 GeV2 the dip in FL in Fig. 6 be-
comes negative, indicating the unreliability of the NNLO
analysis in this domain.

In the region Q >∼ 20 GeV2, Fig. 6 shows a LO → NLO
→ NNLO hierarchy in the small x behaviour of FL, which
reflects that observed for the gluon in Fig. 4. As compared
to the gluon, we see that the NNLO effects in the FL co-
efficient function have improved the stability of the pre-
dictions somewhat. The degree of stability is displayed in
Fig. 7, which shows the NLO/LO and NNLO/NLO ratios
of the FL predictions for two values of Q2. The conver-
gence is slower for small x, which most likely is due to the
influence of missing log(1/x) terms at higher orders. The
convergence improves rather slowly with increasing Q2.

6 In fact at very low Q2 and x ∼ 10−4 the rate of evolution,
dFL/d lnQ2, is negative at NNLO
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Fig. 7. The NLO/LO and NNLO/NLO ratios of the predic-
tions of FL, at two different values of Q2, shown to indicate
the degree of perturbative stability of the analysis

6 Predictions for W and Z hadroproduction

The cross section predictions for W and Z production at
the Tevatron and the LHC are shown in Fig. 8, together
with data from the CDF [19] and D0 [20] collaborations.
The predictions labelled LO, NLO and NNLO are defined
(schematically) as follows7

σLO = fLO ⊗ fLO

σNLO = fNLO ⊗ fNLO ⊗
[
1 + αS,NLO K

(1)
]

σNNLO = fNNLO ⊗ fNNLO ⊗
[
1 + αS,NNLO K

(1)

+ (αS,NNLO)
2
K(2)

]
(12)

where the label on αS indicates the order to which the
β−function is evaluated. The NLO and NNLO contribu-
tions K(1,2) are taken from [21]. The range of NNLO pre-
dictions, corresponding to the A or B choice for the ap-
proximate NNLO splitting functions, is indicated by the
width of the band. As for FL, the extrema are given by

7 All quantities are evaluated in the MS factorization and
renormalization schemes, with scale choice Q = MV
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Fig. 8. The predictions of the cross sections for W and Z
production and leptonic decay at the Tevatron and the LHC
obtained from parton sets of the LO, NLO and NNLO global
analyses. The cross sections labelled LO, NLO, NLO′ (dashed
line) and NNLO are defined in (12,13). The band of NNLO
predictions corresponds to the A, B variation of the small–x
approximate splitting functions, as discussed in the text. Also
shown are measurements obtained at the Tevatron [19,20]. We
take the leptonic branching ratios B(W → lν) = 0.1084 and
B(Z → l+l−) = 0.03364

the AA and BB predictions (see (2)) with the ‘average’
NNLO partons giving cross sections very close to the cen-
tre of the band. Also shown in Fig. 8 (as dashed lines) is
the ‘quasi-NLO’ prediction

σNLO′ = fNLO ⊗ fNLO ⊗
[
1 + αS,NLO K

(1)

+ (αS,NLO)
2
K(2)

]
(13)

which is the expression used in previous MRST estimates
of the W and Z cross sections [9,10]. The NLO′ predic-
tions enable us to identify the separate NNLO contri-
butions to the cross sections from changing from NLO
to NNLO partons and from including the explicit O(α2

S)
NNLO coefficient functions (K(2)) in the W,Z cross sec-
tion perturbation series.

The LO → NLO → NNLO convergence of the pre-
dictions is much better than for FL, because the boson
cross sections depend mainly on the quark distributions
at x ∼ 0.05 (Tevatron) and x ∼ 0.006 (LHC). Since the
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global fits include high precision F2 data, there is consid-
erable stability in the quark distributions in the sampled
x regions, see Fig. 3.

The jump from σLO to σNLO is mainly due to the well-
known large O(αS) double logarithmic Drell-Yan K–factor
correction arising from soft-gluon emission. The NLO and
NNLO cross sections are much closer. By comparing with
the NLO′ predictions, we see that at the Tevatron energy
the increase of about +4% from NLO to NNLO is due in
roughly equal parts to the slight increase in the u and d
partons in this x range (see Fig. 3), and the net effect of
the various K(2) contributions.

At the LHC energy the NLO and NNLO predictions
are even closer, because (a) the K(2) contribution is
smaller due to an almost complete cancellation between
the positive qq̄ and negative qg contributions [21], and
(b) the quark ratios average to unity at x ∼ 0.006 for
Q2 ∼ 104 GeV2, see Fig. 3. The NNLO band is larger
than at the Tevatron because the partons are probed at
smaller x, where there is more uncertainty in the NNLO
evolution.

We may conclude from Fig. 8 that perturbative conver-
gence is not a dominant uncertainty in predicting the W
and Z cross sections. This stability indicates the potential
value of these processes acting as a luminosity monitor for
the Tevatron and the LHC.

7 Conclusions

In this paper we have taken a first look at a NNLO global
parton analysis of deep inelastic and related hard scat-
tering data. Although the NNLO splitting functions are
not fully known, enough information is available to bound
their possible behaviour. Even allowing for the full spread
of the uncertainties of the functions, we are able to draw
interesting conclusions. The inclusion of NNLO effects
gives an overall improvement in the description of the
data, which is due to the increased scaling violations at
both large and small x. In a similar manner, if higher-twist
contributions are allowed, they decrease in magnitude for
both large and small x as we increase the order, approach-
ing very small values for x <∼ 0.3, but remaining large and
positive at large x. The latter behaviour largely reflects
the expectations arising from the presence of heavy target
corrections.

Fitting to the data using LO, NLO and NNLO frame-
works leads to a hierarchy of gluon distributions at small
x, such that the NNLO (MS) input gluon is found to go
negative for x <∼ 10−3. However, we stressed that pertur-
bative convergence should be tested for physical observ-
ables, rather than for the parton distributions themselves.
To this end, the LO, NLO and NNLO predictions were
made for the longitudinal structure function FL, and for
W and Z hadroproduction cross-sections. Although the
input gluon goes negative for x <∼ 10−3, we found that
FL is positive for Q2 >∼ 1 GeV2. Despite this the form of
the predictions for FL show that the DGLAP approach is
not convergent until Q2 ∼ 5 GeV2. The convergence then

improves slowly with increasing Q2 and reveals a LO →
NLO → NNLO hierarchy in the predictions for FL, which
mirrors that of the gluon but with increased stability. A
measure of the uncertainty is the ∼ 15% change in FL in
going from the NLO to NNLO prediction at x ∼ 10−3 and
Q2 ∼ 100 GeV2. The convergence deteriorates with de-
creasing x and most likely is due to the neglect of log(1/x)
contributions beyond the NNLO DGLAP framework. At
low Q2 (Q2 <∼ 5 GeV2) the log(1/x) terms are even more
important. There is also the possibility of higher-twist con-
tributions, which for FL may be different at small x from
those for F2 [27]. On the other hand the predictions of
the W and Z hadroproduction cross sections are rather
stable, due to the more direct relation between the fitted
data and the predictions.

Here we have addressed, in an exploratory fashion, the-
oretical issues arising from including NNLO corrections in
global parton analyses of deep inelastic and related data.
However new HERA data with increased precision will
soon be available. These will be included in a new global
analysis to yield both an updated set of NLO partons and
a first set of NNLO distributions.
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Appendix: NNLO treatment
of heavy flavour partons

For the treatment of heavy flavours we use an approxi-
mate NNLO generalization of the Thorne-Roberts variable
flavour number scheme (VFNS). This scheme was pre-
sented in detail in [22], and the general framework outlined
for all orders in perturbation theory. Essentially one ob-
tains the VFNS coefficient functions in terms of the fixed
flavour number scheme (FFNS) coefficient functions and
partonic matrix elements Aab. The former are the coeffi-
cient functions calculated assuming that the heavy quark
(denoted by H) has no parton distribution, but may only
be created via a hard scattering process. The matrix ele-
ments define the (nf + 1)–flavour parton distributions in
terms of the nf–flavour parton distributions, i.e. the AHa

tell one how the heavy quark distribution is constructed
from the light partons and the Aab,H tell one how the light
parton distributions are altered by internal heavy quarks
(in particular A(0)

ab,H = δab). The VFNS coefficient func-
tions are determined by solving (3.5)-(3.9) in the latter of
[22]. For example,

C
FF(n)
Hg =

n∑
m=0

C
VF(n−m)
Hg ⊗A(m)

gg,H+nfC
VF,PS(n−m)
Hq ⊗A(m)

qg,H

+[CVF,NS(n−m)
HH + CVF,PS(n−m)

HH ] ⊗A(m)
Hg . (14)
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The matrix elements and FFNS coefficient functions are
unambiguously calculable, but there is some element of
choice in the VFNS coefficient functions since there are
more degrees of freedom than there are constraining equa-
tions. One may eliminate this ambiguity by simply calcu-
lating diagrams assuming one has initial state heavy par-
tons and keeping mass dependent terms. However, this
leads to unphysical threshold behaviour for the coefficient
functions, and we choose instead to impose as physical
a constraint as possible. Hence, we make the derivative
of FH

2 (x,Q2) continuous in the gluon sector (which over-
whelmingly dominates) as one switches from FFNS to
VFNS coefficient functions and turns on the heavy quark
parton distribution at Q2 = m2

H . This choice of VFNS
coefficient functions is essentially a freedom in factoriza-
tion schemes, with all schemes becoming identical when
summed to all orders, but differing by terms ∼ m2

H/Q
2 at

finite order.
At NNLO, all VFNSs experience two related technical

complications due to internal quark loops which may or
may not be cut. First, it has long been known that the
parton distributions become discontinuous at µ2 = m2

H at
O(α2

S) [23]
8. For example, the heavy quark distribution at

µ2 = m2
H becomes

(H + H̄)(2) (x,m2
H)

=
(
αS(m2

H)
2π

)2

[A(2)
Hg ⊗ g(m2

H) +A(2)
Hq ⊗ q(m2

H)]. (15)

The gluon and light quarks also acquire discontinuities as
the heavy parton distribution is turned on, such that mo-
mentum is conserved, see [23]. These lead to a correspond-
ing discontinuity in the coefficient functions, maintaining
the continuity of the structure functions, e.g. solving (14)
at NNLO at µ2 = m2

H one obtains

C
FF(2)
Hg = CVF(2)

Hg + CVF,NS(0)
HH ⊗A(2)

Hg. (16)

The second complication at NNLO arises because the
heavy quarks in the final states are no longer just those
coupling directly to the external vector boson probe, but
can be generated even when it is a light quark coupling
to this probe. In principle it is a technical shortcoming of
our scheme that the implicit definition of the heavy quark
structure function involves the heavy quark coupling to
the external vector boson. This simplifies the factoriza-
tion, but is not strictly physically correct. A more general
prescription is discussed in [24], where a cut in invariant
mass has to be implemented above which heavy quark-
antiquark pairs generated away from the external vertex
may be defined as observable.

In this paper we simply ignore both these complica-
tions. This is due to the fact that the whole analysis is
approximate and also because both lead to effects which
in practice are extremely small9 – especially when com-
pared to other uncertainties. Both complications should

8 This discontinuity begins at O(αS) in some factorization
schemes

9 The change in parton distributions across threshold was in-
vestigated in [24], but using GRV98 NLO parton distributions

be dealt with in a truly precise NNLO analysis once the
exact NNLO splitting functions are known, though we
are confident that they (especially the latter) will lead
to tiny effects. However, at present we do not even know
the NNLO, i.e. O(α3

S), FFNS coefficient functions, so a
precise VFNS is impossible to define.

Nevertheless, this is where our heavy flavour prescrip-
tion comes into its own. Other prescriptions [26,24] which
use the coefficient functions from diagrams involving sin-
gle initial state heavy partons rely on precise cancellations
between the heavy quark distributions and terms involv-
ing the VFNS coefficient functions in order to maintain
smooth behaviour. For example, at NNLO a large contri-
bution to the heavy quark evolution from α3

SP
(2)
qg needs to

be cancelled by a term α3
SP

(2)
qg ln(µ2/m2

H)CVF(0)
2,HH ⊗ g(µ2)

to avoid too quick a growth of FH
2 (x,Q2) for µ2 just above

m2
c . In our prescription the correct threshold behaviour is

built into CVF(0)
2,HH automatically, i.e. CVF(0)

2,HH = 0 if W 2 <

4m2
H , and such precise cancellations are not necessary –

simply including NNLO evolution of the heavy quarks
without NNLO heavy quark coefficient functions at all
maintains smooth behaviour. However, we want to obtain
the correct NNLO high Q2 limit. Hence, we include the
massless O(α2

S) coefficient functions for the heavy quarks,
but weighted by a factor of β = (1−4m2

Hz/(Q
2(1−z))0.5,

i.e. the velocity of the heavy quark in the centre of mass
system, to impose the correct threshold behaviour at low
Q2. This procedure is very simplistic, but it contains all
the relevant physics. Significant improvements to this ap-
proximate procedure would require the NNLO FFNS co-
efficient functions.

Finally, we note that the heavy flavour longitudinal
coefficient functions behave like β3, and thus are heavily
suppressed until very highQ2. At such high Q2, the O(α3

S)
coefficient functions have become relatively unimportant,
and hence we simply omit the O(α3

S) longitudinal coeffi-
cient functions until a more precise analysis is possible.
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